
2020-11-23

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

A widget class for
graphical user interfaces

2
A widget class for graphical user interfaces

Outline

• In this lesson, we will:

– Review frames and dialogs

– Consider how to display content in these windows

– Describe the ideal of widgets and panels

– Observe that if both these objects are derived from the same base
class that this will make our implementation much easier

– This is a very useful application of polymorphism

3
A widget class for graphical user interfaces

Warning

• Please remember, we don’t expect you know how to implement
a graphical user interface

– This is the result of years of experience and a team of software
engineers and developers working together

• We are presenting this as an example of where inheritance could
be useful in the real world

– Try to understand why we are suggesting and describing

4
A widget class for graphical user interfaces

A review of windows, frames and dialogs

• We have seen how we can use inheritance to simplify our design of
our frame and dialog windows

– The base window class contains that information common to the
two classes we discussed

– Any changes to the base class is immediately shared to both classes

• This ensure features are uniformly introduced

• However, we have yet to describe how content is stored

Hello world

Question

1 2

3 4

2020-11-23

2

5
A widget class for graphical user interfaces

Displaying content

• In the panel, the programmer can include various widgets

– How does the programmer lay these out?

– Does the programmer simply specify where each item goes?

• This would be a nightmare for novice programmers
and even experienced programmers

• It would also lead to wildly varying and very inconsistent interfaces

Hello world

6
A widget class for graphical user interfaces

Ordered display with panels

• Here is the approach:

– The panel contains an ordered list of widgets

– The widgets will be displayed in order with the window deciding
how to lay these out

– The panel has an orientation, either left-to-right or up-down

– The user can set the alignment middle/center, top/left or bottom/right

Hello world Hello world

7
A widget class for graphical user interfaces

Ordered display with panels

• One possible widget a panel can contain is another panel

Hello world Hello world

8
A widget class for graphical user interfaces

Ordered display with panels

• Before we continue:

– Both window frames and window dialogs contain a single panel

– A panel contains an ordered list of widgets

– The panel has an orientation, either horizontal or vertical

– Within the panel, any widgets may be aligned

– Panels can contain panels as well as visible widgets

Hello world Hello world

5 6

7 8

2020-11-23

3

9
A widget class for graphical user interfaces

The widget class

• The widget class would be

class Widget {

public:

virtual void display() const = 0;

};

• This is an abstract class and cannot be instantiated

– A derived class must override the display() member function if

that class is to be instantiated

10
A widget class for graphical user interfaces

The panel class

• We could implement the panel class as follows:
class Panel : public Widget {

public:

Panel();

virtual void display() const override;

virtual void append_widget(Widget *p_new_widget);

virtual void set_orientation(…);

virtual void set_alignment(…);

protected:

Widget *widget_array_[128];

std::size_t widget_count_;

bool horizontal_orientation_;

int alignment_; // 0 left/top

// 1 center/middle

// 2 right/bottom

};

11
A widget class for graphical user interfaces

The panel class

• Here is the constructor defined:
Panel::Panel():

widget_count_{ 0 },
horizontal_orientation_{ true },

alignment{ 1 } {

// Empty constructor

}

12
A widget class for graphical user interfaces

The panel class

• Here are some of the member functions defined:
void Panel::append_widget(Widget *p_new_widget) {

if (widget_count == 128) {

throw invalid_argument{ "Panels limited to 128 widgets" };

} else {

widget_array[widget_count] = p_new_widget;

++widget_count;

}

}

void Panel::display() const {

for (std::size_t k{0}; k < widget_count; ++k) {

widget_array[k]->display();

}

}

9 10

11 12

2020-11-23

4

13
A widget class for graphical user interfaces

Possible widgets?

• What are possible visible widgets?

– A check box contains text and has a state of being selected or not

– A toggle button contains text and has a state of being selected or not,
and only differs from the check box in appearance

• These both have Boolean values

– A slider allows the user to select one of many differ integral values

– A spinner allows the user to cycle through a number of values

• These both have integer values

– A drop-down menu allows the user to chose one of many entries from a list

– A combo-box allows the user to either chose one of many entries from a list
or to also enter a value

• These both have string values

14
A widget class for graphical user interfaces

Possible widgets?

• Those widgets that store a state can thus be accessed
class Boolean_widget : public Widget {

public:

bool value() const = 0;

};

class Integer_widget : public Widget {

public:

int value() const = 0;

};

class String_widget : public Widget {

public:

std::string value() const = 0;

};

15
A widget class for graphical user interfaces

Possible widgets?

• Therefore:

– The check box and toggle button classes would extend the
Boolean_widget class

– The spinner and slider classes would extend the Integer_widget
class

– The drop-down menu and combo box classes would extend the
String_widget class

• Each class that is derived from one of these must implement the
display() and value() member functions

• To add such a widget to the content of a frame or dialog:

– Dynamically allocate the memory for the widget and initialize it

– On the appropriate panel, call append_widget(…) with the

address as the argument

– Similarly, a panel could be dynamically allocated and or appended

16
A widget class for graphical user interfaces

Important

• Please note, this presentation is slightly naïve of some of the more
modern means of creating such classes

– These examples have been significantly simplified in order to help in
understanding how inheritance can be used in programming

– Hopefully you understand the need for having a base widget class,
a class from which such differing classes such as panels and check
boxes can be derived

13 14

15 16

2020-11-23

5

17
A widget class for graphical user interfaces

Summary

• Following this lesson, you now

– Understand a common approach to displaying graphical widgets on
the screen

– Know that a panel class groups widgets and displays them either
horizontally or vertically with an orientation

– Understand that both the panel class and all other visible widget
classes are derived from an abstract widget class

– Are aware that classes need to override the display() and in some
cases the value() member functions in order to make it possible to
create instances of such classes

18
A widget class for graphical user interfaces

References

[1] https://en.wikipedia.org/wiki/Graphical_widget

19
A widget class for graphical user interfaces

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

20
A widget class for graphical user interfaces

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

17 18

19 20

